Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 705: 149743, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442445

RESUMO

Neutrophil extracellular traps (NETs) released by neutrophils upon inflammation or infection, act as an innate immune defense against pathogens. NETs also influence inflammatory responses and cell differentiation in host cells. Osteoclasts, which are derived from myeloid stem cells, are critical for the bone remodeling by destroying bone. In the present study, we explores the impact of NETs, induced by the inflammatory agent calcium ionophore A23187, on the differentiation and activation of osteoclasts, potentially through suppressing RANK expression. Our results collectively suggested that the inhibition of RANKL-mediated osteoclastogenesis by NETs might lead to the suppression of excessive bone resorption during inflammation.


Assuntos
Reabsorção Óssea , Armadilhas Extracelulares , Humanos , Osteogênese , Osteoclastos , Neutrófilos , Diferenciação Celular , Inflamação , Ligante RANK
2.
J Toxicol Sci ; 48(10): 557-569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778984

RESUMO

The hydrophilic compound 2-hydroxyethyl methacrylate (HEMA) is a major component of dental bonding materials, and it enhances the binding of resin-composites to biomolecules. However, HEMA is a well-known contact sensitizer. We reported previously that intradermal injection of HEMA induces the production of IL-1 locally in the skin. Keratinocytes are the first barrier against chemical insults and constitutively express IL-1α. In this study, we analyzed whether HEMA induces the production of inflammatory cytokines from murine keratinocyte cell line Pam212 cells. We demonstrated that HEMA induced the release of 17-kDa mature IL-1α and caused cytotoxicity. The activity of calpain, an IL-1α processing enzyme, was significantly higher in HEMA-treated cells. The thiol-containing antioxidant N-acetyl cysteine (NAC) inhibited HEMA-induced IL-1α release but not cytotoxicity. NAC inhibited intracellular calpain activity and reactive oxygen species (ROS) production induced by HEMA. NAC post-treatment also inhibited IL-1α release and intracellular ROS production induced by HEMA. Furthermore, HEMA-induced in vivo inflammation also inhibited by NAC. NAC inhibited polymerization of HEMA through adduct formation via sulfide bonds between the thiol group of NAC and the reactive double bond of HEMA. HEMA-induced IL-1α release and cytotoxicity were also inhibited if HEMA and NAC were pre-incubated before adding to the cells. These results suggested that NAC inhibited IL-1α release through decreases in intracellular ROS and the adduct formation with HEMA. We concluded that HEMA induces IL-1α release from skin keratinocytes, and NAC may be a promising candidate as a therapeutic agent against inflammation induced by HEMA.


Assuntos
Acetilcisteína , Calpaína , Camundongos , Animais , Acetilcisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Metacrilatos/toxicidade , Metacrilatos/química , Queratinócitos/metabolismo , Inflamação
3.
Biochem Biophys Res Commun ; 674: 90-96, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37413710

RESUMO

Mast cell extracellular traps (MCETs) released by mast cells contribute to host defense. In this study, we investigated the effects of MCETs released from mast cells after infection with a periodontal pathogen Fusobacterium nucleatum. We found that F. nucleatum induced MCET release from mast cells, and that MCETs expressed macrophage migration inhibitory factor (MIF). Notably, MIF bound to MCETs induced proinflammatory cytokine production by monocytic cells. These findings suggest that MIF expressed on MCETs, released from mast cells upon infection with F. nucleatum, promotes inflammatory responses that may be associated with the pathogenesis of periodontal disease.


Assuntos
Armadilhas Extracelulares , Fatores Inibidores da Migração de Macrófagos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Mastócitos , Fusobacterium nucleatum , Armadilhas Extracelulares/metabolismo
4.
Biol Pharm Bull ; 46(3): 432-439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858572

RESUMO

Anaphylaxis is a serious allergic or hypersensitivity reaction with a sudden onset that can be life-threatening or fatal. Previous studies have highlighted two pathways of anaphylaxis in mice. One is the classical immunoglobulin E (IgE)-mediated pathway that involves mast cells and histamine. The other is an alternative IgG-mediated pathway that involves basophils, monocytes/macrophages, neutrophils, and the platelet-activating factor (PAF). However, little is known about the mechanism by which complement anaphylatoxins contribute to the induction of anaphylaxis. Infection is a cofactor that potentially amplifies the risk of anaphylaxis. Here, we showed that priming with a lipopolysaccharide (LPS), which mimics bacterial infection, exacerbates anaphylatoxin C5a-induced anaphylaxis in mice. LPS plus C5a-induced anaphylaxis was mediated by histamine and lipid mediators, especially PAF. Cell depletion experiments demonstrated that LPS plus C5a-induced anaphylaxis depended on monocytes/macrophages, basophils, and neutrophils. These results suggest that C5a is a potent inducer of anaphylaxis in bacterial infections. Remarkably, the molecular and cellular mediators of LPS plus C5a-induced anaphylaxis are mostly shared with IgE- and IgG-mediated anaphylaxis. Therefore, combined inhibition of histamine and PAF may be beneficial as a second-line treatment for severe anaphylaxis.


Assuntos
Anafilaxia , Animais , Camundongos , Lipopolissacarídeos , Histamina , Anafilatoxinas , Imunoglobulina E , Imunoglobulina G
5.
Inflamm Res ; 72(3): 651-667, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36723628

RESUMO

OBJECTIVE AND METHODS: IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33. RESULTS: A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia. CONCLUSION: IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.


Assuntos
Eosinofilia , Histidina Descarboxilase , Camundongos , Animais , Histamina , Interleucina-33 , Interleucina-5 , Citocinas , Eosinofilia/induzido quimicamente , Proteínas Proto-Oncogênicas c-kit
6.
Biochem Biophys Res Commun ; 636(Pt 2): 1-9, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36335857

RESUMO

Edible mushrooms are known to exert anti-inflammatory effects. In this study, the effects of ethanol extracts from edible mushrooms, such as Hericium erinaceus, and other edible mushrooms on inflammatory responses were investigated. Experiments were conducted using the inflammatory responses of human monocytes induced by lipopolysaccharide (LPS), a bacterial component, that provokes inflammation. Notably, we demonstrated that LPS mixed with ethanol and hot water extracts derived from edible mushrooms attenuated the production of inflammatory cytokines, such as interleukin (IL)-1ß, -6, and -8, induced by LPS in human monocytic cell cultures. Moreover, we found that the ethanol extract of H. erinaceus contained ergosterol, which attenuated IL-8 production in LPS-stimulated cells. Subsequent component analysis of the ethanol extract of H. erinaceus revealed that ergosterol binds to lipid A to attenuate LPS-induced inflammation. Together, our findings suggest that ergosterol in ethanol extracts from edible mushrooms can prevent the induction of inflammation by binding to LPS.


Assuntos
Agaricales , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/uso terapêutico , Ergosterol/farmacologia , Etanol , Monócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Agaricales/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo
7.
Inflamm Res ; 71(12): 1603-1617, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308538

RESUMO

OBJECTIVE AND METHODS: Nitrogen-containing bisphosphonates (NBPs, anti-bone-resorptive agents) have inflammatory side-effects. Alendronate (Ale, an NBP) intradermally injected into mouse ear-pinnae together with LPS (bacterial cell-wall component) induces augmented ear-swelling that depends on IL-1 and neutrophils. Using this model, we examined histamine's involvement in Ale + LPS-induced inflammation. RESULTS: Ale increased histamine in ear-pinnae by inducing histidine decarboxylase (HDC). This induction was augmented by LPS. In HDC-deficient mice, such augmented ear-swelling was not induced. At peak-swelling, 74.5% of HDC-expressing cells were neutrophils and only 0.2% were mast cells (MCs). The augmented swelling was markedly reduced by a histamine H4-receptor (H4R) antagonist, but not by an H1R antagonist. In MC-deficient mice, unexpectedly, Ale + LPS induced prolonged ear-swelling that was augmented and more persistent than in normal mice. MCs highly expressed H4Rs and produced MCP-1(inflammatory cytokine that recruits macrophages) and IL-10 (anti-inflammatory cytokine) in response to an H4R agonist. CONCLUSION: Histamine produced by HDC-induction mainly in infiltrated neutrophils stimulates H4Rs, leading to augmented Ale + LPS-induced ear-swelling via MCP-1 production by MCs. Since MCP-1 is produced by other cells, too, the contribution of MCs and their H4Rs to augmented ear-swelling is partial. In the later phase of the swelling, MCs may be anti-inflammatory via IL-10 production.


Assuntos
Histamina , Receptores Histamínicos H4 , Animais , Camundongos , Anti-Inflamatórios , Difosfonatos/efeitos adversos , Histamina/metabolismo , Histidina Descarboxilase/genética , Inflamação/induzido quimicamente , Interleucina-10/genética , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Nitrogênio/efeitos adversos , Receptores Histamínicos H4/metabolismo
8.
Anticancer Res ; 42(6): 2931-2937, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35641264

RESUMO

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC) is one of the most common tumors of the head and neck region. The tumor suppressor gene p53 (TP53) is the most frequently mutated gene in OSCC and TP53 mutations are associated with decreased survival and resistance to chemotherapy in patients with OSCC. Therefore, therapeutic strategies targeting TP53 reactivation are required to effectively treat OSCC. In this study, we investigated the effect of various p53-reactivating small molecules (RITA, PRIMA-1, and CP-31398) on the proliferation of human OSCC cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) derived from human oral tissues bearing a mutant TP53 gene. MATERIALS AND METHODS: Apoptosis induction by RITA was assessed by measuring Annexin V and propidium iodide (PI)-positive cells using flow cytometry. p53 and murine double minute 2 (MDM2) phosphorylation and Bax expression were detected in the lysates of RITA-treated Ca9-22 cells using western blotting. RESULTS: RITA markedly inhibited the growth of Ca9-22, HSC-2, HSC-3, and HSC-4 cells. In Ca9-22 cells, RITA induced apoptosis and inhibited cell proliferation while increasing p53 phosphorylation and Bax expression; however, RITA did not induce MDM2 phosphorylation. CONCLUSION: The inhibitory effect of RITA on human OSCC cell proliferation is mediated by apoptosis induction through p53 and Bax.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53 , Apoptose , Genes p53 , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Sci Rep ; 12(1): 931, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042931

RESUMO

Gland macrophages are primed for gland development and functions through interactions within their niche. However, the phenotype, ontogeny, and function of steady-state salivary gland (SG) macrophages remain unclear. We herein identified CD11c+ and CD11c- subsets among CD64+ macrophages in steady-state murine SGs. CD11c- macrophages were predominant in the SGs of embryonic and newborn mice and decreased with advancing age. CD11c+ macrophages were rarely detected in the embryonic period, but rapidly expanded after birth. CD11c+, but not CD11c-, macrophage numbers decreased in mice treated with a CCR2 antagonist, suggesting that CD11c+ macrophages accumulate from bone marrow-derived progenitors in a CCR2-dependent manner, whereas CD11c- macrophages were derived from embryonic progenitors in SGs. CD11c+ and CD11c- macrophages strongly expressed colony-stimulating factor (CSF)-1 receptor, the injection of an anti-CSF-1 receptor blocking antibody markedly reduced both subsets, and SGs strongly expressed CSF-1, indicating the dependency of SG resident macrophage development on CSF-1. The phagocytic activity of SG macrophages was extremely weak; however, the gene expression profile of SG macrophages indicated that SG macrophages regulate gland development and functions in SGs. These results suggest that SG CD11c+ and CD11c- macrophages are developed and instructed to perform SG-specific functions in steady-state SGs.


Assuntos
Antígenos CD11/genética , Macrófagos/metabolismo , Glândulas Salivares/metabolismo , Animais , Antígenos CD11/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Diferenciação Celular , Células Dendríticas/imunologia , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Glândulas Salivares/imunologia
10.
J Innate Immun ; 14(4): 306-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34823251

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is constitutively produced by endothelial cells and plays a vital role in maintaining vascular homeostasis. Chronic periodontitis is an inflammatory disease characterized by bleeding of periodontal tissues that support the tooth. In this study, we aimed to determine the role of PAI-1 produced by endothelial cells in response to infections caused by the primary periodontal pathogen Porphyromonas gingivalis. We demonstrated that P. gingivalis infection resulted in significantly reduced PAI-1 levels in human endothelial cells. This reduction in PAI-1 levels could be attributed to the proteolysis of PAI-1 by P. gingivalis proteinases, especially lysine-specific gingipain-K (Kgp). We demonstrated the roles of these degradative enzymes in the endothelial cells using a Kgp-specific inhibitor and P. gingivalis gingipain-null mutants, in which the lack of the proteinases resulted in the absence of PAI-1 degradation. The degradation of PAI-1 by P. gingivalis induced a delayed wound healing response in endothelial cell layers via the low-density lipoprotein receptor-related protein. Our results collectively suggested that the proteolysis of PAI-1 in endothelial cells by gingipains of P. gingivalis might lead to the deregulation of endothelial homeostasis, thereby contributing to the permeabilization and dysfunction of the vascular endothelial barrier.


Assuntos
Células Endoteliais , Porphyromonas gingivalis , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Cisteína Endopeptidases Gingipaínas , Humanos , Inibidor 1 de Ativador de Plasminogênio , Porphyromonas gingivalis/fisiologia , Cicatrização
11.
Biol Pharm Bull ; 44(11): 1670-1680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719644

RESUMO

Bisphosphonates (BPs) are major anti-bone-resorptive drugs. Among them, the nitrogen-containing BPs (NBPs) exhibit much stronger anti-bone-resorptive activities than non-nitrogen-containing BPs (non-NBPs). However, BP-related osteonecrosis of the jaw (BRONJ) has been increasing without effective strategies for its prevention or treatment. The release of NBPs (but not non-NBPs) from NBP-accumulated jawbones has been supposed to cause BRONJ, even though non-NBPs (such as etidronate (Eti) and clodronate (Clo)) are given at very high doses because of their low anti-bone-resorptive activities. Our murine experiments have demonstrated that NBPs cause inflammation/necrosis at the injection site, and that Eti and Clo can reduce or prevent the inflammatory/necrotic effects of NBPs by inhibiting their entry into soft-tissue cells. In addition, our preliminary clinical studies suggest that Eti may be useful for treating BRONJ. Notably, Eti, when administered together with an NBP, reduces the latter's anti-bone-resorptive effect. Here, on the basis of the above background, we examined and compared in vitro interactions of NBPs, non-NBPs, and related substances with hydroxyapatite (HA), and obtained the following results. (i) NBPs bind rapidly to HA under pH-neutral conditions. (ii) At high concentrations, Eti and Clo inhibit NBP-binding to HA and rapidly expel HA-bound NBPs (potency Eti>>Clo). (iii) Pyrophosphate also inhibits NBP-binding to HA and expels HA-bound NBPs. Based on these results and those reported previously, we discuss (i) possible anti-BRONJ strategies involving the use of Eti and/or Clo to reduce jawbone-accumulated NBPs, and (ii) a possible involvement of pyrophosphate-mediated release of NBPs as a cause of BRONJ.


Assuntos
Difosfatos/farmacologia , Difosfonatos/metabolismo , Durapatita/metabolismo , Cálcio/farmacologia , Concentração de Íons de Hidrogênio , Magnésio/farmacologia , Nitrogênio
12.
J Bone Miner Res ; 36(9): 1866-1878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075628

RESUMO

Among the bisphosphonates (BPs), nitrogen-containing BPs (N-BPs) have much stronger anti-bone-resorptive actions than non-N-BPs. However, N-BPs have various side effects such as acute influenza-like reactions after their initial administration and osteonecrosis of the jawbones after repeated administration. The mechanisms underlying such effects remain unclear. To overcome these problems, it is important to profile the inflammatory nature of N-BPs. Here, we analyzed the inflammatory reactions induced in mouse ear pinnae by the N-BPs alendronate (Ale) and zoledronate (Zol). We found the following: (i) Ale and Zol each induced two phases of inflammation (early weak and late strong ear swelling); (ii) both phases were augmented by lipopolysaccharides (LPSs; cell-surface constituent of gram-negative bacteria, including oral bacteria), but prevented by inhibitors of the phosphate transporters of solute carrier 20/34 (SLC20/SLC34); (iii) macrophages and neutrophils were involved in both phases of Ale+LPS-induced ear-swelling; (iv) Ale increased or tended to increase various cytokines, and LPS augmented these effects, especially that on interleukin 1ß (IL-1ß); (v) adenosine triphosphate (ATP) was involved in both phases, and Ale alone or Ale+LPS increased ATP in ear pinnae; (vi) the augmented late-phase swelling induced by Ale+LPS depended on both IL-1 and neutrophil extracellular traps (NETs; neutrophil-derived net-like complexes); (vii) neutrophils, together with macrophages and dendritic cells, also functioned as IL-1ß-producing cells, and upon stimulation with IL-1ß, neutrophils produced NETs; (viii) stimulation of the purinergic 2X7 (P2X7) receptors by ATP induced IL-1ß in ear pinnae; (ix) NET formation by Ale+LPS was confirmed in gingiva, too. These results suggest that (i) N-BPs induce both early-phase and late-phase inflammation via ATP-production and P2X7 receptor stimulation; (ii) N-BPs and LPS induce mutually augmenting responses both early and late phases via ATP-mediated IL-1ß production by neutrophils, macrophages, and/or dendritic cells; and (iii) NET production by IL-1ß-stimulated neutrophils may mediate the late phase, leading to prolonged inflammation. These results are discussed in relation to the side effects seen in patients treated with N-BPs. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Armadilhas Extracelulares , Lipopolissacarídeos , Trifosfato de Adenosina , Animais , Difosfonatos/farmacologia , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Nitrogênio , Receptores Purinérgicos P2X7
13.
J Oral Biosci ; 63(1): 80-90, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497843

RESUMO

OBJECTIVES: The aim of this study was to investigate the inflammatory roles of P2 purinergic receptor (P2R) signaling in oral squamous cell carcinoma (OSCC). METHODS: Human OSCC cell lines HSC-2, Ca9-22, and HO-1-u-1 were stimulated with P2R agonists. The concentration of interleukin (IL)-6 in culture supernatants was measured using an enzyme-linked immune sorbent assay. Expression levels of messenger RNAs (mRNAs) were analyzed using reverse transcription polymerase chain reaction. Phosphorylation of intracellular signaling molecules was analyzed using western blotting. RESULTS: HSC-2 cells expressed the mRNAs for P2X4-6 and all P2YRs. ATP or ADP induced significantly greater production of IL-6 by HSC-2 cells. Ca9-22 cells expressed mRNAs for P2X4-6 and all P2YRs except P2Y4. ATP or ADP induced the production of IL-6 by Ca9-22 cells, but the IL-6 concentration was much lower than that in HSC-2 cells. Although HO-1-u-1 cells expressed the mRNAs for P2X4-6 and all P2YRs, ATP or ADP did not induce IL-6 production. The production of IL-6 by HSC-2 cells stimulated with adenine nucleotides was significantly inhibited by P2R antagonists and a p38 mitogen-activated protein kinase inhibitor, but not by extracellular signal-related kinase or c-Jun N-terminal kinase inhibitors. The proinflammatory cytokine IL-1 significantly augmented P2R-induced IL-6 production by HSC-2 cells via the nuclear factor-κB signaling pathway. CONCLUSIONS: The present study suggests that P2Rs signaling and IL-1 synergistically induce chronic inflammation in OSCC. Because chronic inflammation is a well-known driving force of tumor progression, these results support therapeutic strategies that target P2Rs signaling in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Linhagem Celular , Células Cultivadas , Humanos , Interleucina-1 , Interleucina-6/genética
14.
Sci Rep ; 10(1): 5050, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193426

RESUMO

Nickel (Ni) is the most frequent metal allergen and induces Th1-dependent type-IV allergies. In local skin, epidermal Langerhans cells (LCs) and/or dermal dendritic cells (DCs) uptake antigens and migrate to draining lymph nodes (LNs). However, the subsets of antigen-presenting cells that contribute to Ni presentation have not yet been identified. In this study, we analyzed the Ni-binding capabilities of murine DCs using fluorescent metal indicator Newport Green. Elicitation of Ni allergy was assessed after intradermal (i.d.) injection of Ni-treated DCs into ear pinnae of Ni-sensitized mice. The Ni-binding capabilities of MHC class IIhi CD11cint migratory DCs were significantly stronger than those of MHC class IIint CD11chi resident DCs and CD11cint PDCA1+ MHC class IIint B220+ plasmacytoid DCs. Migratory DCs in skin-draining and mandibular LNs showed significantly stronger Ni-binding capabilities than those in mesenteric and medial iliac LNs. An i.d. injection of IL-1ß induced the activation of LCs and dermal DCs with strong Ni-binding capabilities. Ni-binding LCs were detected in draining LNs after i.d. challenge with IL-1ß and Ni. Moreover, an i.d. injection of Ni-treated DCs purified from skin-draining LNs elicited Ni-allergic inflammation. These results demonstrated that migratory DCs in skin-draining LNs have strong Ni-binding capabilities and elicit Ni allergy.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Derme/citologia , Níquel/imunologia , Alérgenos/imunologia , Animais , Antígenos CD11/imunologia , Células Cultivadas , Derme/imunologia , Humanos , Interleucina-1beta/imunologia , Camundongos
15.
J Nutr Sci Vitaminol (Tokyo) ; 66(1): 82-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115458

RESUMO

Biotin is a water-soluble B-complex vitamin that functions as a cofactor of five carboxylases. Because biotin-dependent carboxylases catalyze indispensable cellular metabolic functions, biotin deficiency is considered to be involved in various pathological conditions. Moreover, biotin supplementation shows pharmacological effects in vivo. However, the precise mechanisms by which biotin deficiency induces pathological conditions remain unclear. Although abnormal metabolites are used as indicators for biotin deficiency, few comprehensive analyses of total metabolites have been reported. In this study, we analyzed the metabolomic profiles of liver extracts prepared from biotin-sufficient (BS) and -deficient (BD) mice. Thirteen of 126 metabolites showed significantly different concentrations between liver extracts from BD and BS mice. The concentrations of 5 essential amino acids, Met, Val, Thr, Ile, and Leu, and 2 conditionally essential amino acids, Cys and Tyr were significantly lower in BD mice than in BS mice. Among these, the concentrations of sulfur-containing amino acids, Cys and Met, were more than 1.5-fold lower in BD mice. The concentrations of Met metabolites, such as S-adenosylmethionine and S-adenosylhomocysteine were not significantly different between the two groups. The concentrations of glutathione and its reaction intermediates γ-Glu-Cys tendency to be lower in BD mice. The present study revealed that biotin deficiency induces an abnormal amino acids composition, especially among sulfur-containing amino acids and provide important information on the effect of biotin as a pharmacological agent.


Assuntos
Biotina/metabolismo , Deficiência de Biotinidase/metabolismo , Fígado/metabolismo , Metaboloma/fisiologia , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/metabolismo , Aminoácidos Sulfúricos/análise , Aminoácidos Sulfúricos/metabolismo , Animais , Biotina/deficiência , Dieta , Fígado/química , Camundongos
16.
Clin Exp Allergy ; 49(10): 1362-1373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325186

RESUMO

BACKGROUND: We previously reported that (a) lipopolysaccharide (LPS) is a potent adjuvant for inducing Nickel (Ni) allergy in mice at both the sensitization and elicitation steps, (b) LPS induces Interleukin-1 (IL-1) and histidine decarboxylase (HDC, the histamine-forming enzyme), and IL-1 induces HDC, (c) Ni allergy is induced in mast cell-deficient, but not IL-1-deficient (IL-1-KO) or HDC-KO mice. OBJECTIVE: To examine the roles of IL-1 and HDC (or histamine) and their interrelationship during the establishment of Ni allergy. METHODS: Ni (NiCl2 ) 1 mmol/L containing IL-1ß and/or histamine was injected intraperitoneally (sensitization step). Ten days later, test substance(s) were intradermally injected into ear pinnas (elicitation step), and ear swelling was measured. RESULTS: In wild-type mice, Ni + LPS or Ni + IL-1ß injection at sensitization step followed by Ni alone at elicitation step induced Ni allergy. In IL-1-KO, injection of Ni + IL-1ß (but not Ni + histamine) was required at both sensitization and elicitation steps to induce Ni allergy. In HDC-KO, Ni + IL-1ß + histamine at sensitization step followed by Ni + histamine at elicitation step induced Ni allergy. In histamine H1 receptor-deficient mice, IL-1ß induced HDC, but was ineffective as an adjuvant for inducing Ni allergy. In wild-type mice, injection into ear pinnas of Ni 10 mmol/L alone or Ni 1 mmol/L + LPS induced IL-1ß, HDC and a prolonged swelling of ear pinnas. In non-sensitized mice, injection of IL-1ß by itself into ear pinnas in IL-1-KO mice induced prolonged ear swelling. Ni augmented IL-1 production (both IL-1α and IL-1ß) and HDC induction in wild-type mice sensitized to Ni. CONCLUSIONS: In mice: (a) for inducing Ni allergy, IL-1 is essential at both the sensitization and elicitation steps, and HDC induction is involved in the effect of IL-1, (b) stimulation of H1 receptor is also essential for inducing Ni allergy at both sensitization and elicitation steps, and (c) the 'sensitization to Ni' state may be a state where tissues are primed for augmented production of IL-1α and/or IL-1ß in response to Ni. (within 300 words, now 300).


Assuntos
Histamina/imunologia , Hipersensibilidade/imunologia , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Níquel/toxicidade , Receptores Histamínicos H1/imunologia , Animais , Hipersensibilidade/genética , Hipersensibilidade/patologia , Interleucina-1alfa/genética , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores Histamínicos H1/genética
17.
J Oral Biosci ; 61(2): 73-77, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31109864

RESUMO

BACKGROUND: Sublingual immunotherapy (SLIT) is used for the treatment of type 1 allergies, such as allergic rhinitis. SLIT leads to tolerance against allergens possibly via the redirection of allergen-specific T helper 2 cells to T helper 1 cells and the generation of peripheral regulatory T (Treg) cells. However, the detailed mechanisms remain unclear. Systemic tolerance to orally administered antigens (oral tolerance) has been extensively investigated. Recent studies have recognized the central role of Treg cells and classical dendritic cells (cDCs) in oral tolerance development. HIGHLIGHT: This review focuses on recent advances in the understanding of the underlying mechanisms of SLIT compared with those of oral tolerance. The sublingual administration of soluble protein antigens has been reported to induce antigen-specific Treg cells in oral mucosa-draining submandibular lymph nodes in mice. The generation of Treg cells is critical for SLIT efficacy because the transfer of SLIT-induced Treg cells confers tolerance against the antigens. A large number of oral cDCs with the CD103-CD11b+ phenotype exert retinoic acid-producing activity and convert naïve CD4+ T cells into Foxp3+ Treg cells in vitro in a transforming growth factor-ß-dependent and retinoic acid-dependent manner. Oral CD103-CD11b+ cDCs transport sublingual antigens to submandibular lymph nodes and induce antigen-specific Treg cells. Sublingual antigens enter the mucosa most likely by crossing the sublingual ductal epithelium and are captured by oral antigen-presenting cells, especially macrophages. CONCLUSION: Oral CD103-CD11b+ cDCs are specialized for the induction of Treg cells in mice; thus, targeting their human counterpart may enhance the therapeutic effects of SLIT.


Assuntos
Imunoterapia Sublingual , Administração Sublingual , Alérgenos , Animais , Humanos , Tolerância Imunológica , Camundongos , Linfócitos T Reguladores
18.
Biol Pharm Bull ; 42(2): 164-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713248

RESUMO

Bisphosphonates (BPs) bind strongly to bone and exhibit long-acting anti-bone-resorptive effects. Among BPs, nitrogen-containing BPs (N-BPs) have far stronger anti-bone-resorptive effects than non-N-BPs. However, N-BPs induce acute inflammatory reactions (fever, arthralgia and myalgia, etc.) after their first injection. The mechanisms underlying these side effects remain unclear. Zoledronate (one of the most potent N-BPs) is given intravenously to patients, and the side-effect incidence is reportedly the highest among N-BPs. Our murine experiments have clarified that (a) intraperitoneally injected N-BPs induce various inflammatory reactions, including a production of interleukin-1 (IL-1) (a typical inflammatory cytokine), and these inflammatory reactions are weak in IL-1-deficient mice, (b) subcutaneously injected N-BPs induce inflammation/necrosis at the injection site, (c) lipopolysaccharide (LPS; a cell-wall component of Gram-negative bacteria) and N-BPs mutually augment their inflammatory/necrotic effects, (d) the non-N-BP clodronate can reduce N-BPs' inflammatory/necrotic effects. However, there are few animal studies on the side effects of intravenously injected N-BPs. Here, we found in mice that (i) intravenous zoledronate exhibited weaker inflammatory effects than intraperitoneal zoledronate, (ii) in mice given intravenous zoledronate, LPS-induced production of IL-1α and IL-1ß was augmented in various tissues, including bone, resulting in them increasing in serum, and (iii) clodronate (given together with zoledronate) prevented such augmentation and enhanced, slightly but significantly, zoledronate's anti-bone-resorptive effect. These results suggest that infection may be a factor promoting the acute inflammatory side effects of N-BPs via augmented production of IL-1 in various tissues (including bone), and that clodronate may be useful to reduce or prevent such side effects.


Assuntos
Ácido Clodrônico/farmacologia , Interleucina-1beta/biossíntese , Ácido Zoledrônico/farmacologia , Animais , Conservadores da Densidade Óssea/uso terapêutico , Sinergismo Farmacológico , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/sangue , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Músculos Peitorais/efeitos dos fármacos , Músculos Peitorais/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo
19.
Sci Rep ; 9(1): 921, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696909

RESUMO

The ultimate goal of periodontal disease treatment is the reorganization of functional tissue that can regenerate lost periodontal tissue. Regeneration of periodontal tissues is clinically possible by using autogenic transplantation of MSCs. However, autologous MSC transplantation is limited depending on age, systemic disease and tissue quality, thus precluding their clinical application. Therefore, we evaluated the efficacy of allogeneic transplantation of adipose-derived multi-lineage progenitor cells (ADMPC) in a micro-mini pig periodontal defect model. ADMPC were isolated from the greater omentum of micro-mini pigs, and flow cytometry analysis confirmed that the ADMPC expressed MSC markers, including CD44 and CD73. ADMPC exhibited osteogenic, adipogenic and periodontal ligament differentiation capacities in differentiation medium. ADMPC showed high expression of the immune suppressive factors GBP4 and IL1-RA upon treatment with a cytokine cocktail containing interferon-γ, tumor necrosis factor-α and interleukin-6. Allogeneic transplantation of ADMPC in a micro-mini pig periodontal defect model showed significant bone regeneration ability based on bone-morphometric analysis. Moreover, the regeneration ability of ADMPC by allogeneic transplantation was comparable to those of autologous transplantation by histological analysis. These results indicate that ADMPC have immune-modulation capability that can induce periodontal tissue regeneration by allogeneic transplantation.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea , Regeneração Tecidual Guiada Periodontal , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Imuno-Histoquímica , Imunomodulação , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteogênese , Periodonto/diagnóstico por imagem , Periodonto/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/imunologia , Células-Tronco/metabolismo , Suínos , Porco Miniatura , Engenharia Tecidual , Transplante Homólogo , Microtomografia por Raio-X
20.
Cell Rep ; 23(8): 2354-2364, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791847

RESUMO

Metabolic immunomodulation involving IL-1 has been investigated for unfavorable metabolic effects, including obesity, but a potentially favorable role for IL-1 remains unclear. Here, we find mechanistic interactions between working skeletal muscles and locally recruited neutrophils expressing IL-1ß, which supports muscle performance through priming exercise-dependent GLUT4 translocation. Thus, during exercise, both IL-1α/ß-deficient and neutrophil-depleted mice similarly exhibit increased fatigability associated with impaired muscle glucose homeostasis due to GLUT4 dysregulation. Deficiency of IL-1-producing neutrophils results in intrinsic abnormalities represented by aberrant Rac1 signaling and irregular GLUT4-storage vesicles, suggesting that these properties are maintained by local IL-1 produced by recruited neutrophils upon exercise, possibly on a daily basis. We propose that neutrophils are highly engaged in skeletal muscle performance via IL-1 regulation, which coordinates favorable inflammatory microenvironments supporting muscle glucose metabolism.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Interleucina-1/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Animais , Metabolismo dos Carboidratos , Homeostase , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Caminhada , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...